Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaquabis[5-(2-pyridylmethyl)tetrazolato- $\kappa^2 N^1 . N^5$ |zinc(II)

Yang Liu, Ya-Ling Li, Xiu-Guang Wang and En-Cui Yang*

College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China

Correspondence e-mail: encui_yang@yahoo.com.cn

Received 20 May 2011; accepted 23 May 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.022; wR factor = 0.053; data-to-parameter ratio = 11.2.

In the title mononuclear complex, $[Zn(C_7H_6N_5)_2(H_2O)_2]$, the Zn^{II} atom, located on an inversion centre, is in a distorted octahedral coordination geometry formed by four N atoms from two chelating 5-(2-pyridylmethyl)tetrazolate ligands and two O donors from two water molecules. Intermolecular O-H...N hydrogen bonds between the coordinated water molecule and the tetrazolyl group of the 5-(2-pyridylmethyl)tetrazolate ligand lead to the formation of a threedimensional network.

Related literature

For metal-organic frameworks with tetrazolate ligands and their applications in magnetism, fluorescence and gas storage, see: Yang et al. (2011); Feng et al. (2010); Zhao et al. (2008); Panda et al. (2011). For metal complexes with in situ-generated 5-(2-pyridylmethyl)-tetrazolate ligands, see: Xu et al. (2009); Wang (2008).

Experimental

Crystal data $[Zn(C_7H_6N_5)_2(H_2O)_2]$

 $M_{\rm m} = 421.74$

Monoclinic, $P2_1/c$ Z = 2a = 6.6695 (4) Å Mo $K\alpha$ radiation b = 13.8949 (8) Å $\mu = 1.57 \text{ mm}^{-1}$ c = 10.8718 (5) Å T = 173 K $0.20 \times 0.10 \times 0.08 \ \mathrm{mm}$ $\beta = 127.055 \ (2)^{\circ}$ V = 804.05 (8) Å³ Data collection

Bruker APEXII CCD	3929 measured reflections
diffractometer	1388 independent reflections
Absorption correction: multi-scan	1335 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.030$
$T_{\min} = 0.745, \ T_{\max} = 0.885$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$	124 parameters
$wR(F^2) = 0.053$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$
1388 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots N4^{i}$	0.85	2.00	2.8395 (19)	171
$O1 - H1B \cdots N2^{ii}$	0.85	2.16	2.9386 (18)	152

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z.

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from Tianjin Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5553).

References

- Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Feng, Y., Yang, E.-C., Fu, M. & Zhao, X.-J. (2010). Z. Anorg. Allg. Chem. 636, 253 - 257
- Panda, T., Pachfule, P., Chen, Y., Jiang, J. & Banerjee, R. (2011). Chem. Commun. 47. 2011-2013.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, W. (2008). Acta Cryst. E64, m999.
- Xu, G.-H., Tian, H., Pan, K.-J. & Ye, Q. (2009). J. Coord. Chem. 62, 2457-2464. Yang, E.-C., Feng, Y., Liu, Z.-Y. & Zhao, X.-J. (2011). CrystEngComm, 13, 230-242.
- Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100

supplementary materials

Acta Cryst. (2011). E67, m803 [doi:10.1107/S1600536811019507]

Diaquabis[5-(2-pyridylmethyl)tetrazolato- $\kappa^2 N^1$, N^5]zinc(II)

Y. Liu, Y.-L. Li, X.-G. Wang and E.-C. Yang

Comment

Design and construction of metal-organic frameworks (MOFs) with *in situ* generated tetrazolate ligands are of great interest due to their intriguing structures and topology (Zhao *et al.*, 2008), promising applications in magnetism (Yang *et al.* 2011), luminscence (Feng *et al.* 2010), and gas storage (Panda *et al.* 2011) as well as the effectiveness, simplicity, and environmental friendliness of the *in situ* synthetic route. Up to date, lots of tetrazolyl-based MOFs have been reported with special interest on the tuning of the organic nitrile and metal ions (Xu *et al.* 2009; Wang *et al.*, 2008). Herein, as our continuing investigations on the coordination chemistry of the tetrazolyl ligand, we report the crystal structure of a diaquazinc(II) complex with an *in situ* generated 5-(2-pyridylmethyl)-tetrazolate ligand.

The molecular structure of the title mononuclear complex is show Figure 1. The Zn^{II} ion in the mononuclear structure of I, locating on an inversion center, exhibits a slightly distorted octahedral geometry involoving four N donors from two in situ generated 5-(pyridin-2-ylmethyl)tetrazolate ligands, and two O atoms from a pair of coordinated water molecules. The flexible 5-(pyridin-2-ylmethyl)tetrazolate anion acts as a bidentate chelating ligand to coordinate with Zn^{II} through pyridyl and tetrazolyl N donors.

In the crystal structure, intermolecular O—H···N hydrogen bonds between the coordinated water molecules and the tetrazolyl group of 5-(2-pyridylmethyl)- tetrazolate ligand (Table 2) lead to the formation of a three-dimensional network (Figure 2).

Experimental

A mixture containing 2-(pyridin-2-yl)acetonitrile (26 mg, 0.2 mmol), $Zn(NO_3)_2$ (29.7 mg, 0.1 mmol), 1,3,5-benzenetricarboxylic acid (21.0 mg, 0.1 mmol), NaN₃ (13.0 mg, 0.2 mmol), and doubly deionized water (10.0 ml) was sealed in a Teflon-lined reactor (23.0 ml) and heated at 125 °C for 72 h. After the mixture was cooled to room temperature at a rate of 5.5°C/h, pale-yellow block-shaped crystals suitable for X-ray diffraction analysis were obtained. Yield: 56% based on Zn^{II} salt. Anal. Calcd.for C₁₄H₁₆N₁₀O₂Zn: C, 39.87; H, 3.82; N, 33.21%. Found: C, 39.85; H, 3.82; N, 33.24%.

Refinement

H atoms were located in a difference map but refined using a riding model with O-H = 0.85Å, $C_{aromatic}$ -H = 0.95Å, $C_{methyl-ene}$ -H = 0.99Å and with U(H) set to 1.2 U of the parent atom.

Figures

Fig. 1. The molecular structure of the title complex with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level [Symmetry code: (A) 1 - x, 2 - y, -z].

Fig. 2. Three-dimensional network of the title complex assembled from hydrogen-bonding interactions.

Diaquabis[5-(2-pyridylmethyl)tetrazolato- $\kappa^2 N^1$, N^5]zinc(II)

Crystal data

 $[Zn(C_7H_6N_5)_2(H_2O)_2]$ $M_r = 421.74$ Monoclinic, $P2_1/c$ a = 6.6695 (4) Å b = 13.8949 (8) Å c = 10.8718 (5) Å $\beta = 127.055$ (2)° V = 804.05 (8) Å³ Z = 2

Data collection

Bruker APEXII CCD diffractometer	1388 independent reflections
Radiation source: fine-focus sealed tube	1335 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.030$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 7$
$T_{\min} = 0.745, T_{\max} = 0.885$	$k = -16 \rightarrow 11$
3929 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

F(000) = 432

 $\theta = 2.8 - 28.4^{\circ}$

 $\mu = 1.57 \text{ mm}^{-1}$

Block, pale yellow

 $0.20\times0.10\times0.08~mm$

T = 173 K

 $D_{\rm x} = 1.742 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3869 reflections

$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.053$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0146P)^2 + 0.7405P]$ where $P = (F_o^2 + 2F_c^2)/3$
1388 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
124 parameters	$\Delta \rho_{max} = 0.62 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	quivalent	isotrop	oic dis	placement	parameters +	$(Å^2$)
1		000.0000000		01.0010	0. 0.	100000000000000000000000000000000000000	1001.00		p	pen enterers,	(/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.5000	1.0000	0.0000	0.01318 (11)
01	0.6481 (2)	0.90283 (9)	-0.08811 (14)	0.0196 (3)
H1A	0.5809	0.8510	-0.1382	0.024*
H1B	0.7995	0.9131	-0.0532	0.024*
N1	0.4006 (3)	0.88555 (10)	0.07937 (16)	0.0144 (3)
N2	0.1830 (3)	0.86762 (11)	0.05983 (17)	0.0164 (3)
N3	0.2217 (3)	0.79864 (11)	0.15370 (17)	0.0185 (3)
N4	0.4661 (3)	0.77039 (11)	0.23846 (16)	0.0161 (3)
N5	0.8595 (3)	0.99858 (9)	0.22729 (17)	0.0135 (3)
C1	0.5681 (3)	0.82608 (12)	0.18945 (19)	0.0140 (4)
C2	0.8406 (3)	0.82446 (13)	0.2548 (2)	0.0166 (4)
H2A	0.8553	0.8047	0.1730	0.020*
H2B	0.9289	0.7759	0.3381	0.020*
C3	0.9670 (3)	0.92064 (13)	0.3181 (2)	0.0146 (4)
C4	0.9710 (3)	1.08445 (13)	0.2853 (2)	0.0159 (4)
H4	0.8952	1.1398	0.2218	0.019*
C5	1.1913 (3)	1.09628 (14)	0.4334 (2)	0.0189 (4)
Н5	1.2641	1.1582	0.4704	0.023*
C6	1.3018 (3)	1.01590 (14)	0.5256 (2)	0.0196 (4)
Н6	1.4524	1.0216	0.6276	0.023*
C7	1.1908 (3)	0.92742 (14)	0.4676 (2)	0.0175 (4)
H7	1.2659	0.8712	0.5289	0.021*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01153 (16)	0.01131 (17)	0.01161 (16)	-0.00133 (10)	0.00427 (13)	0.00173 (10)
01	0.0142 (6)	0.0174 (7)	0.0229 (6)	-0.0019 (5)	0.0089 (5)	-0.0076 (6)
N1	0.0128 (7)	0.0135 (7)	0.0140 (7)	-0.0012 (6)	0.0066 (6)	0.0001 (6)
N2	0.0138 (7)	0.0160 (8)	0.0174 (7)	-0.0018 (6)	0.0083 (6)	-0.0003 (7)
N3	0.0160 (7)	0.0183 (8)	0.0189 (7)	-0.0012 (6)	0.0093 (6)	0.0004 (7)
N4	0.0150 (7)	0.0145 (7)	0.0169 (7)	-0.0003 (6)	0.0086 (6)	0.0018 (6)
N5	0.0127 (7)	0.0136 (8)	0.0141 (7)	0.0005 (5)	0.0080 (6)	0.0011 (5)
C1	0.0160 (8)	0.0104 (8)	0.0143 (8)	-0.0005 (7)	0.0085 (7)	-0.0020 (7)
C2	0.0153 (8)	0.0139 (9)	0.0189 (9)	0.0028 (7)	0.0094 (7)	0.0029 (8)
C3	0.0141 (8)	0.0176 (9)	0.0164 (8)	0.0020 (7)	0.0115 (7)	0.0019 (8)
C4	0.0166 (8)	0.0159 (9)	0.0146 (8)	-0.0015 (7)	0.0092 (7)	0.0008 (8)
C5	0.0180 (9)	0.0212 (10)	0.0169 (9)	-0.0049 (8)	0.0102 (8)	-0.0038 (8)
C6	0.0127 (8)	0.0298 (10)	0.0151 (9)	0.0001 (8)	0.0078 (7)	-0.0005 (8)
C7	0.0145 (8)	0.0214 (10)	0.0172 (9)	0.0051 (7)	0.0100 (7)	0.0058 (8)
Geometric para	meters (Å, °)					
Zn1—N1 ⁱ		2.0983 (14)	N5—	C3	1.34	5 (2)
Zn1—N1		2.0984 (14)	C1—	C2	1.50	1 (2)
Zn1—N5		2.1714 (15)	C2—	C3	1.507 (2)	
Zn1—N5 ⁱ		2.1714 (15)	C2—1	H2A	0.9900	
Zn1—O1		2.2039 (12)	C2—1	H2B	0.99	00
Zn1—O1 ⁱ		2.2039 (12)	C3—	C7	1.39	9 (2)
O1—H1A		0.8501	C4—4	C5	1.38	8 (2)
O1—H1B		0.8500	C4—]	H4	0.95	00
N1—C1		1.324 (2)	C5—	C6	1.38	0 (3)
N1—N2		1.3572 (19)	C5—]	Н5	0.95	00
N2—N3		1.307 (2)	C6—4	C7	1.37	6 (3)
N3—N4		1.360 (2)	C6—1	H6	0.95	00
N4—C1		1.335 (2)	C7—1	H7	0.95	00
N5—C4		1.345 (2)				
N1 ⁱ —Zn1—N1		180.00 (7)	C3—]	N5—Zn1	125.	26 (11)
N1 ⁱ —Zn1—N5		93.96 (5)	N1—	C1—N4	111.	52 (15)
N1—Zn1—N5		86.04 (5)	N1—	N1—C1—C2		99 (15)
N1 ⁱ —Zn1—N5 ⁱ		86.04 (5)	N4—	C1—C2	124.	45 (15)
N1—Zn1—N5 ⁱ		93.96 (5)	C1—	С2—С3	112.	78 (14)
N5—Zn1—N5 ⁱ		180.0	C1—	C2—H2A	109.	0
N1 ⁱ —Zn1—O1		87.13 (5)	C3—	C2—H2A	109.	0
N1—Zn1—O1		92.87 (5)	C1—	С2—Н2В	109.	0
N5—Zn1—O1		90.71 (5)	C3—	С2—Н2В	109.	0
N5 ⁱ —Zn1—O1		89.29 (5)	H2A-	C2H2B	107.	8
$N1^{i}$ —Zn1—O1 ⁱ		92.87 (5)	N5—	С3—С7	121.	50 (16)

N1—Zn1—O1 ⁱ	87.13 (5)	N5—C3—C2	118.36 (15)
N5—Zn1—O1 ⁱ	89.29 (5)	C7—C3—C2	120.14 (16)
$N5^{i}$ —Zn1—O1 ⁱ	90.71 (5)	N5—C4—C5	123.28 (17)
$O1$ —Zn1— $O1^{i}$	180.00 (6)	N5—C4—H4	118.4
Zn1—O1—H1A	126.6	C5—C4—H4	118.4
Zn1—O1—H1B	115.2	C6—C5—C4	118.38 (17)
H1A—O1—H1B	117.0	С6—С5—Н5	120.8
C1—N1—N2	105.52 (13)	С4—С5—Н5	120.8
C1—N1—Zn1	122.75 (11)	C7—C6—C5	119.06 (17)
N2—N1—Zn1	130.38 (11)	С7—С6—Н6	120.5
N3—N2—N1	108.81 (13)	С5—С6—Н6	120.5
N2—N3—N4	109.47 (13)	C6—C7—C3	119.69 (17)
C1—N4—N3	104.66 (14)	С6—С7—Н7	120.2
C4—N5—C3	118.08 (15)	С3—С7—Н7	120.2
C4—N5—Zn1	116.42 (11)		
$N1^{i}$ — $Zn1$ — $N1$ — $C1$	-100 (10)	$O1^{i}$ —Zn1—N5—C3	116.31 (13)
N5—Zn1—N1—C1	-26.79 (13)	N2—N1—C1—N4	1.07 (19)
$N5^{i}$ —Zn1—N1—C1	153.21 (13)	Zn1—N1—C1—N4	169.09 (11)
O1—Zn1—N1—C1	63.72 (13)	N2—N1—C1—C2	-176.72 (15)
$O1^{i}$ —Zn1—N1—C1	-116.28 (13)	Zn1—N1—C1—C2	-8.7 (2)
$N1^{i}$ —Zn1—N1—N2	65 (10)	N3—N4—C1—N1	-0.63 (19)
N5—Zn1—N1—N2	137.97 (14)	N3—N4—C1—C2	177.15 (15)
$N5^{i}$ —Zn1—N1—N2	-42.03 (14)	N1—C1—C2—C3	56.5 (2)
01—Zn1—N1—N2	-131.52 (14)	N4—C1—C2—C3	-121.02 (18)
$O1^{i}$ —Zn1—N1—N2	48.48 (14)	C4—N5—C3—C7	-1.2 (2)
C1—N1—N2—N3	-1.10 (18)	Zn1—N5—C3—C7	-175.34 (12)
Zn1—N1—N2—N3	-167.85 (11)	C4—N5—C3—C2	178.95 (15)
N1—N2—N3—N4	0.75 (18)	Zn1—N5—C3—C2	4.8 (2)
N2—N3—N4—C1	-0.09 (18)	C1—C2—C3—N5	-51.8 (2)
$N1^{i}$ —Zn1—N5—C4	34.93 (13)	C1—C2—C3—C7	128.33 (16)
N1—Zn1—N5—C4	-145.07 (13)	C3—N5—C4—C5	0.3 (2)
N5 ⁱ —Zn1—N5—C4	85.1 (7)	Zn1—N5—C4—C5	174.98 (13)
O1—Zn1—N5—C4	122.11 (12)	N5—C4—C5—C6	0.2 (3)
01 ⁱ —Zn1—N5—C4	-57.89 (12)	C4—C5—C6—C7	0.2 (3)
N1 ⁱ —Zn1—N5—C3	-150.86 (13)	C5—C6—C7—C3	-1.0 (3)
N1—Zn1—N5—C3	29.14 (13)	N5—C3—C7—C6	1.6 (2)
N5 ⁱ —Zn1—N5—C3	-100.7 (7)	C2—C3—C7—C6	-178.58 (16)
O1—Zn1—N5—C3	-63.69 (13)		
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.	~ /		
.			
Hydrogen-bond geometry (A, \circ)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \mathbf{H} \cdots \!\!\!-\!$
O1—H1A····N4 ⁱⁱ	0.85	2.00	2.8395 (19)	171
O1—H1B···N2 ⁱⁱⁱ	0.85	2.16	2.9386 (18)	152

Symmetry codes: (ii) *x*, –*y*+3/2, *z*–1/2; (iii) *x*+1, *y*, *z*.

Fig. 1

Fig. 2